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Abstract 4 

The hydrologic community has experienced a surge in interest in machine learning in recent 5 

years. This interest is primarily driven by rapidly growing hydrologic data repositories, as 6 

well as success of machine learning in various academic and commercial applications, now 7 

possible due to increasing accessibility to enabling hardware and software. This overview is 8 

intended for readers new to the field of machine learning. It provides a non-technical 9 

introduction, placed within a historical context, to commonly used machine learning 10 

algorithms and deep learning architectures. Applications in hydrologic sciences are 11 

summarized next, with a focus on recent studies. They include the detection of patterns and 12 

events such as land use change, approximation of hydrologic variables and processes such as 13 

rainfall-runoff modeling, and mining relationships among variables for identifying 14 

controlling factors. The use of machine learning is also discussed in the context of integrated 15 

with process-based modeling for parameterization, surrogate modeling, and bias correction. 16 

Finally, the article highlights challenges of extrapolating robustness, physical interpretability, 17 

and small sample size in hydrologic applications. 18 

 19 
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 22 
Caption: Machine learning has been used in various hydrologic applications in stand-alone 23 

mode or integrated with process-based modeling. Arrows indicate information flow. 24 

 25 

1. INTRODUCTION 26 

Machine learning is the set of methods and algorithms that enable computers to 27 

automatically improve performance through experience. As such, they manifest the “data-28 

driven” reasoning as opposed to “knowledge-driven” reasoning that underpins most physical 29 

science disciplines. Since the pioneering research that was conducted in the 1950s (Turing, 30 

1950; Rosenblatt, 1958), the field of machine learning has seen dramatic progress. In the 31 

1980s, backpropagation (Rumelhart et al., 1986) was found to be effective in training 32 

artificial neural networks (ANNs), which led to a surge in machine learning research centered 33 

around ANNs and their widespread applications in various disciplines, including hydrology 34 

(Buch et al., 1993; Kang et al., 1993; Hsu et al., 1995; Smith and Eli, 1995). Later, support 35 

vector machines (SVM, Vapnik, 1995) and other kernel methods (Liang et al., 2007; 36 

Hofmann et al., 2008) were discovered and became popular. In recent years, machine 37 

learning has become an interdisciplinary area intersecting with computer science, statistics, 38 

applied mathematics, and optimization.    39 

 40 

Successful applications of conventional machine learning algorithms typically require 41 

a set of customized input features that best represent the raw data for the subsequent learning 42 

tasks. Deep learning, a class of machine learning algorithms based on ANNs of multiple 43 

layers (thus deep), is capable of automatically discovering appropriate representations from 44 
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raw data (LeCun et al., 2015). While some deep learning architectures such as Recurrent 45 

Neural Network (RNN) were invented by the 1990s, widespread interest in deep learning 46 

research and applications flourished in the 2010s when low-cost computation and massive 47 

online data became increasingly available. Recent advances in machine learning, primarily in 48 

the field of deep learning, have brought breakthroughs in computer vision, speech 49 

recognition, and natural language processing and have achieved enormous successes in both 50 

scientific and commercial applications.   51 

 52 

Inspired by the enormous success reported in the deep learning community and 53 

industry, researchers from various scientific disciplines are eager to apply machine learning 54 

techniques to problems from their own fields (Ching et al., 2018; Khan and Yairi, 2018; 55 

Radovic et al., 2018; Mater and Coote, 2019; Reichstein et al., 2019; Brunton et al., 2020; 56 

Sengupta et al., 2020). In the hydrologic sciences community, a growing interest in machine 57 

learning is largely driven by the availability of vast hydrologic data repositories (Shen, 2018; 58 

Shen et al., 2018). Advances in sensor technology, promotion of hydrologic observatories, 59 

and developments of cyberinfrastructure that enables easy sharing of data, have all ushered in 60 

an era of data deluge in the form of a plethora of in situ sensor measurements as well as 61 

remote sensing imagery. Existing knowledge about hydrological processes is, therefore, no 62 

longer adequate to represent the full range of variability observed in data (Hipsey et al., 2015; 63 

Kumar, 2015). In addition, due to the unprecedented volume and complexity of data, the 64 

knowledge-driven reasoning alone is not adequate to get the most out of available data. 65 

Machine learning, as well as the data-driven reasoning it enables, thus provides exciting 66 

opportunities for both the recovery of a full range of variability (thus bringing potentially 67 

improved prediction capability) as well as our capacity to discover new knowledge. 68 

 69 

This paper aims to give a broad and non-technical overview of machine learning and 70 

its recent applications in hydrologic sciences. We begin this overview by introducing 71 

fundamental concepts and terminology. We then briefly describe several popular non-deep 72 

machine learning algorithms and deep learning architectures along with common practices of 73 

applying these methods. Next, we explore existing research, with a focus on recent studies 74 

that apply machine learning in hydrologic sciences. Finally, we conclude with challenges 75 

associated with applying machine learning for hydrologic problems and accompanying 76 

research opportunities. 77 

 78 

2. MACHINE LEARNING BASICS 79 

As a subset of artificial intelligence (AI), machine learning algorithms can 80 

automatically improve their performance with respect to some tasks through experience (Fig. 81 

1; Mitchell, 1997). The experience here refers to examples or data points that are provided to 82 

the machine learning algorithm. An example consists of measurements of 𝑝 input variables 83 

𝐱 = [𝑥1, . . . , 𝑥𝑝]𝑇; it may also contain a label or target, 𝑦, associated with 𝑥. Unsupervised 84 

learning aims to identify the underlying structure of the examples {𝐱1, 𝐱2, … , 𝐱n}. On the 85 

other hand, supervised learning seeks to infer a function that maps inputs 𝒙 to the label or 86 

target 𝑦. Supervised learning tasks can be further categorized into classification (when the 87 

labels take categorical values) and regression (when the labels take numerical values). For 88 

supervised learning, the performance refers to the discrepancy between the observed label or 89 

target and the one output by the learning algorithm. For unsupervised learning, since no label 90 

is available, the performance is often defined to be some objective function tied to the 91 

underlying algorithm. Another important consideration is how to represent the knowledge 92 
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learned from experience. A machine learning algorithm makes assumptions about the 93 

functional form of the knowledge learned from experience, often referred to as the hypothesis 94 

space. Parametric machine learning algorithms make explicit assumptions regarding the 95 

format of the function, such as a linear or polynomial function of the input. In contrast, 96 

nonparametric alternatives tend to make less assumptions about the form of functions. For 97 

quick reference, Table 1 summarizes the above and other key terminology that will be 98 

discussed in this section.   99 

 100 

 101 

 102 

Table 1. Definition of terms 103 

Term Explanation 

Artificial intelligence  

The study of intelligence demonstrated by a machine manifested 

by its capability to perceive the environment and take actions to 

achieve its goals and tasks through flexible adaptation (Kaplan 

and Haenlein, 2019). 

Classification 
A subtype of supervised learning where the targets are 

categories or labels. 

Deep learning 

A class of machine learning algorithms based on artificial neural 

networks (ANNs) and using hierarchical architectures to extract 

higher level features from input data via representation learning. 

Feature engineering 

The process of creating features from raw data that may be 

useful for subsequent learning task; typically implemented 

manually with domain expertise.  

Generalization 

error/test error 

The prediction capability of a trained machine learning model 

on independent test data unseen during training.  

Hyperparameters/tunin

g parameters 

Settings that can be tweaked to change the structure (e.g., 

number of layers in an ANN) and behavior (e.g., smoothness 

preference) of the learning algorithm. 

Machine learning 

A subset of AI (Fig. 1); learning methods and algorithms that 

enable computers to automatically improve performance through 

experience.  

Overfitting 

Overfitting occurs when a machine learning model has a high 

degree of freedom that cannot be fully justified by the training 

data. The opposite, underfitting, occurs when a model is too 

simple and thus inflexible in representing the range of variability 

of the training data. 

Regression 
A subtype of supervised learning where the targets are real 

numbers. 

Regularization 

A technique intended to reduce the generalization error, often by 

modifying the loss function to penalize deviation from certain 

preference (e.g., smoothness). 

Representation learning 

Techniques that automatically discover representation (or 

features) that are useful for subsequent learning tasks. Also 

known as feature learning. 
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Supervised learning 

The computer is given examples consisting of inputs and their 

desired targets; the computer is trained on these examples to 

learn the input-to-target relationship. 

Unsupervised learning 
The computer is given inputs but no target variables; the goal is 

to find underlying patterns in the input data.  

 104 

 105 

 106 
Figure 1. The nested concepts of artificial intelligence, machine learning, representation 107 

learning, and deep learning. Definitions of the four terms are listed in Table 1. 108 

 109 
 110 

In the context of hydrology, unsupervised learning techniques can be used, for example, to 111 

cluster catchments into groups with distinct hydrologic regimes. Distinguishing different land 112 

cover types from multi-spectral satellite images can be formulated as a classification 113 

problem, where a classifier needs to learn the mapping from spectral bands and derived 114 

indices (inputs) to land cover classes (labels). A formulation of streamflow forecasting is a 115 

regression problem that learns a functional relationship between streamflow with some lead 116 

time (target) and inputs such as the past and forecasted meteorological conditions and past 117 

streamflow data. Given historical examples of the inputs and corresponding target, a machine 118 

learning model can be trained by minimizing mean squared error (performance metric). 119 

These problems can be approached using various machine learning algorithms that differ in 120 

the choices of hypothesis space, loss/objective function, and optimization method. Below we 121 

provide a brief, intuitive descriptions (along with references) of several conventional machine 122 

learning and deep learning algorithms that have been applied in hydrologic sciences. Readers 123 

are also referred to Shen et al. (2018) for a transdisciplinary review of deep learning and 124 

Tahmasebi et al. (2020) for a review of machine learning algorithms commonly used in 125 

geosciences focused on porous media problems. Readers who are interested in a more 126 

comprehensive, in-depth discussion of machine learning theory and algorithms may refer to 127 

Mitchell (1997), Hastie et al. (2009), and Goodfellow et al. (2016). Besides, Géron (2019) 128 

provides hands-on guide to machine learning and deep learning with working code.   129 

 130 
2.1. Conventional machine learning algorithms 131 

2.1.1. Clustering  132 

Artificial 
intelligence

Machine 
learning

Representation 
learning

Deep 
learning
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Clustering, or cluster analysis, refers to a category of unsupervised learning methods 133 

that partitions data into groups with the goal of maximizing the similarity of data within the 134 

same group and minimizing the similarity of data among groups. There exist a variety of 135 

clustering methods and associated similarity measures, often based on the reciprocal of 136 

distance (Irani et al., 2016). A popular clustering algorithm is K-means, which takes a 137 

random initialization of the cluster assignment, and then iteratively minimizes the within-138 

cluster point scatter until convergence (MacQueen, 1967; Hartigan and Wong, 1979). The 139 

within-cluster point scatter is defined as the sum of the distance (e.g., Euclidean) between 140 

every pair of data points assigned to the same cluster.  141 

 142 

Over the past few decades, variants of K-means and other algorithms such as 143 

agglomerative hierarchical clustering and fuzzy clustering have been proposed and used in 144 

various applications (de Oliveira and Pedrycz, 2007; Jain, 2010; Murtagh and Legendre, 145 

2014; Tennant et al., 2021). Although clustering is an unsupervised learning technique, it is 146 

sometimes used to learn data representation in the pre-processing step for a supervised 147 

learning task. For example, the cluster assignment can be used to produce new features on top 148 

of the raw input variables (Coates et al., 2011). 149 

 150 
2.1.2. Lasso 151 

Least Absolute Shrinkage and Selection Operator (Lasso) is a widely used regression 152 

method that adds an 𝐿1 penalty term (the sum of absolute value of linear regression 153 

coefficients) to the ordinary least squares loss function in order to keep the regression 154 

coefficients small (Tibshirani, 1996). Because of the 𝐿1 regularization, Lasso typically sets 155 

some of the regression coefficients to zero. The number of zero coefficients depends on the 156 

penalty hyperparameter, which is usually determined through cross validation. As such, the 157 

algorithm performs both feature selection and parameter estimation simultaneously, and has 158 

been widely used for high dimensional regression problems. In addition, Lasso can be used 159 

for classification when combined with logistic regression (Hosmer et al., 2013). Due to its 160 

good generalization performance, sparsity and interpretability, Lasso has been used in various 161 

applications (e.g., Anda et al., 2018; Bardsley et al., 2015; Vandal et al., 2019).  162 

 163 

Table 2. Comparison of the representation of input variables by five supervised 164 

machine learning algorithms (Lasso, SVM, GPR, CART, and ANN). 165 
Algorithm Representation 

Lasso 𝐱 = [𝑥1, … , 𝑥𝑝]
𝑇
, original inputs 

SVM & GPR 𝜙(𝐱), inputs projected to a higher dimensional feature space 

CART 𝟏{𝐱 ∈ 𝑅𝑖}, indicator function that equals 1 if 𝐱 is in the leaf 𝑅𝑖 and 0 

otherwise.  

ANN 𝑓𝑑 (… 𝑓2(𝑓1(𝐱))), output of the last hidden layer 

 166 

 167 
2.1.3. Support vector machine (SVM) 168 

Support vector machine (SVM) is believed to be among the most robust prediction 169 

methods because it seeks to minimize an upper bound of the generalization error rather than 170 

the training error (Vapnik, 1995). In addition, the solution is globally optimal under 171 

conditions that can often be met, while other machine learning algorithms such as ANN may 172 
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converge to local minima. The SVM algorithm maps the input variables to a higher 173 

dimensional feature space, 𝜙(𝐱) (Table 2). The map is usually implemented implicitly via a 174 

kernel function, also known as the kernel trick. The kernel function is analogous to the 175 

covariance function in Gaussian process (Section 2.1.4). For classification tasks, SVM 176 

identifies the optimal separating hyperplanes in the feature space while maximizing the 177 

margin between classes. Kernel trick enables SVM to classify data points that are not linearly 178 

separable in the original input space. For regression tasks, SVM minimizes an objective 179 

function composed of loss greater than a specified threshold and a 𝐿2 regularization term. 180 

Ideally, the choice of kernel function should be made based on structure of the input data and 181 

their relation to the output. Lastly, it is worth noting that the model produced by SVM is 182 

represented sparsely as the linear combination of a subset of the training data (“support 183 

vectors”) projected into the feature space.  184 

 185 
2.1.4. Gaussian process regression 186 

Gaussian process regression (GPR) is a Bayesian kernel regression method and has 187 

been shown to perform well in a variety of benchmark applications. A GP refers to a set of 188 

random variables, indexed in space and time, that have a joint multivariate Gaussian 189 

distribution. A GP is fully specified by a mean function and a covariance function that 190 

describes the covariance between each pair of the random variables (i.e., the quantity of 191 

interest at two separate locations/times). The two functions should reflect the prior 192 

knowledge of the general trend and level of smoothness of the target function, respectively. 193 

The use of covariance function is analogous to the kernel trick of SVM (Rasmussen and 194 

Williams, 2006) and implicitly maps the inputs to features 𝜙(𝐱) (Table 2). GP is also used by 195 

kriging methods in geostatistics, where the mean and covariance are typically specified as 196 

functions of spatial coordinates. In the context of machine learning, the independent variables 197 

of mean and covariance functions include explanatory variables, thus enabling GPR to 198 

approximate complex, nonlinear relationships between the target and inputs (features). 199 

Starting from the a priori (i.e., before seeing any data) mean and covariance, GPR uses the 200 

Bayes’ Theorem to infer the posterior distribution of the target conditioned on the training 201 

data. Fig. 2a shows samples drawn from a GP with a mean that a priori follows a linear 202 

function of the input; in practical applications such prior knowledge should be incorporated 203 

when available. After training data is introduced, samples can be drawn from the posterior of 204 

the GP conditioned on training data (Fig. 2b). As such, GP regression is a probabilistic 205 

approach that explicitly derives the uncertainty associated with the predictions. As the test 206 

data moves away from the range of training data, the prediction given by GPR will converge 207 

to the prior mean with a wide prediction interval (uncertainty) (Fig. 2b). This is sometimes a 208 

preferred behavior when extrapolating with a function such as polynomial may lead to 209 

problematic results. Unlike the sparsity of SVM, exact GPR prediction at an unseen data 210 

point is a linear combination of all training data points, with the weights estimated based on 211 

the covariance function. Therefore, a disadvantage of GPR is that its computational cost with 212 

maintaining and operation of the covariance matrix can be prohibitive for large datasets. To 213 

overcome this difficulty and improve GPR scalability for big data, various approximation 214 

methods have been developed (Liu et al., 2020). 215 

 216 
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 217 
Figure 2. Schematic of Gaussian process regression (GPR) showing the (a) prior based 218 

on a linear mean function and a squared exponential covariance function, and (b) 219 

posterior conditioned on training data. Dark line shows the prior and posterior means, 220 

respectively, and grey lines are random samples drawn from the GP. Red open circles 221 

are training data points, and they “sculpt” the prior into the posterior. 222 
 223 

2.1.5. Decision trees and forests 224 

Decision trees are a conceptually simple nonparametric machine learning algorithm. 225 

Here we briefly describe the classification and regression trees (CARTs). A CART 226 

recursively partitions the feature space into rectangular regions using a sequence of binary 227 

splits. Each time, the CART chooses a splitting variable from all input variables and 228 

threshold to maximize the goodness-of-fit after this split. The process is repeated until a user-229 

specified minimum number of data points is reached at the leaves, or terminal nodes. Each 230 

leaf represents a rectangle region in the input space, denoted as 𝑅𝑖, 𝑖 = 1, … , 𝑁 with 𝑁 231 

denoting the total number of leaves, and CART fits a constant value 𝛼𝑖 to 𝑅𝑖. For an unseen 232 

data point 𝐱∗, CART prediction is a linear combination of the values of each leaf, i.e. 233 

∑ αi𝟏{𝐱∗ ∈ 𝑅𝑖}
𝑁
𝑖=1 , , where 𝟏{𝐱 ∈ 𝑅𝑖} is an indicator function equal to 1 if 𝐱∗ falls within the 234 

𝑖-th leaf and zero otherwise (Table 2). In its essence, a CART estimates a piecewise constant 235 

function. It is a common practice to prune the tree to a subtree to prevent overfitting. A major 236 

advantage of decision trees is their interpretability. One disadvantage of decision trees is their 237 

statistical instability even after pruning. In other words, small perturbation or noise in the 238 

training data may result in substantially different structure of the learned tree (Hastie et al., 239 

2009).  240 

To overcome the aforementioned disadvantage, forests that are based on multiple 241 

trees have been proposed. For example, the random forests (RF) are an ensemble learning 242 

method proposed by Breiman (2001) based on bootstrap aggregation (i.e., bagging). A RF 243 

consists of multiple CARTs, with each CART grown on a bootstrap sample (i.e., sample with 244 

replacement) of the training data. Each bootstrap sample leaves out about one-third of the 245 

data, which are called the out-of-bag (oob) observations. The oob error is an estimate of 246 

generalization error and can be used to calculate the importance scores of input variables. To 247 

reduce correlation between trees, another design feature of RF that enhances performance is 248 

that at each split, the splitting variable is selected among a randomly chosen subset of input 249 

variables. After all the CARTs have been grown, the prediction for an unseen data point is 250 

calculated as the average of predictions from each individual CART. While being less 251 

interpretable than decision trees, RF calculates input variable importance scores that provide 252 
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valuable information about the dominant factors affecting the target variable. Other popular 253 

tree ensemble algorithms include XGBoost (Chen and Guestrin, 2016) and gradient boosting 254 

machine (Friedman, 2001; Ke et al., 2017), which build the forest based on boosting 255 

algorithms.  256 

 257 

2.1.6. Artificial neural network 258 

Artificial neural networks (ANNs) have been widely applied to various fields 259 

including hydrology. Inspired by biological learning processes, ANNs are built out of a 260 

densely interconnected set of units. Here we briefly describe the feedforward neural 261 

networks, or multilayer perceptron networks (MLP). A typical MLP network consists of an 262 

input layer, one or more hidden layers and an output layer. Fig. 3a shows an example of an 263 

MLP with one hidden layer. For MLPs, information flows through the connections between 264 

units. Each unit, or neuron, computes a single output by passing the weighted sum of its 265 

inputs plus a bias term through a typically smooth, nonlinear activation function (e.g., 266 

sigmoid or rectifier). Using multiple hidden layers, an ANN learns a representation of the raw 267 

input, 𝑥, as a recursive function 𝑓𝑑 (… 𝑓𝑗 … (𝑓2(𝑓1(𝐱)))), where 𝑓𝑗 is the activation function 268 

of j-th layer j and takes a vector input (output of neurons from the prior layer) and outputs a 269 

vector (Table 2). The output layer computes the final output as the linear combination of the 270 

learned representation (the output of the last hidden layer). 271 

 272 

The weights and biases are learned using the backpropagation algorithm. 273 

Backpropagation first evaluates the output values of each neuron in a forward pass of 274 

information. Second, it calculates the partial derivative of the loss function with respect to 275 

each learnable weight and biase. It then updates the weights and biases according to the 276 

partial derivatives in a backward pass through the layers. A hyperparameter, the learning 277 

rate, affects the size of the update. The process is repeated, resulting in a gradient descent 278 

approach.  279 

 280 

ANNs are considered to have high representational power. It has been proven that a 281 

MLP with three layers can approximate any function to arbitrary accuracy given sufficient 282 

units (Cybenko, 1989; Mitchell, 1997). A major shortcoming of MLPs is that the 283 

backpropagation algorithm is only guaranteed to converge to some local minimum. Research 284 

interests in ANNs have been revived in the last decade in the context of deep learning, which 285 

is discussed in Section 2.3.  286 
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 287 

Figure 3. The architecture of (a) a fully connected ANN and (b) a CNN for classifying 288 

hand written digits. The ANN has one hidden layer, within which each neuron applies 289 

an activation function on the linear combination of inputs 𝐱 = [𝑥1, … , 𝑥𝑝]
𝑇

, the flattened 290 

pixel values of the input image. The CNN applies convolution, pooling, an activation 291 

function, followed by a fully connected layer for final output (Section 2.3.2).   292 
 293 
2.2. Model Selection 294 

2.2.1. Comparison of machine learning algorithms  295 

All the supervised machine learning algorithms described in Section 2.1 can be 296 

viewed as learning the target function which is a linear combination of features or 297 

representations.  As summarized in Table 2, the algorithms differ at how 298 

features/representations are constructed. In the simplest case of linear regression, the raw 299 

input variables are directly used as features. Lasso goes one step further, by learning whether 300 

the coefficients are exactly zero or not. SVM and GPR use a user specified kernel 301 

(covariance) to implicitly embed the input into a higher dimensional feature space. CART 302 

learns a representation that adaptively partitions the input space into rectangular regions. The 303 

representation learned by ANN is the output from the last hidden layer, which can be written 304 

as a recursive function. Unlike the other algorithms reviewed in Section 2.1., ANN is not 305 
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restricted to a particular type of representations and can automatically extract information 306 

from raw inputs. This gives ANNs and deep networks high representation power, which is 307 

further discussed in Section 2.3.1.  308 

   309 

The choice of machine learning algorithms is often application specific. The primary 310 

decision factor is the prediction accuracy of the algorithms (generalization performance, 311 

Section 2.2.2.). Empirical studies on various benchmark datasets have suggested that tree 312 

ensemble algorithms generally work well (Fernández-Delgado et al., 2014; 2019). This is 313 

because tree-based algorithms have built-in capability of variable selection and accounting 314 

for interaction among input variables. However, many hydrologic applications involve target 315 

functions that exhibit local smoothness. In this case, it may be more advantageous to use 316 

methods such as SVM and GPR, which can enforce local smoothness by choosing an 317 

appropriate kernel (e.g., the squared exponential kernel). For applications that need to 318 

estimate uncertainty associated with the predictions, Bayesian methods such as GPR offer a 319 

natural option. Other machine learning models could use resampling methods such as 320 

bootstrapping to provide quantification of uncertainty. As will be discussed in Section 2.3.1, 321 

deep networks typically outperform conventional machine learning algorithms when dealing 322 

with unstructured data such as texts, images, and videos because of their capability of 323 

automatic representation learning.  324 

 325 

While generalization performance is arguably the most important consideration for 326 

model selection, it is sometimes desirable to select algorithms with high interpretability. For 327 

example, Lasso produces a parsimonious linear model and is therefore easy to interpret. 328 

Besides, decision trees learn a hierarchical model structure that can be easily visualized; 329 

however, tree ensemble methods are less interpretable. 330 

 331 
2.2.2. Generalization Performance 332 

Generalization error, used interchangeably with test error, is defined as the expected 333 

prediction error, as measured by a given metric, over unseen data points, yielded by a 334 

machine learning model trained on a given training dataset. In contrast, the training error 335 

refers to the average error over the training data points. Commonly used error metrics include 336 

0-1 loss (0 if a data point is correctly categorized and 1 otherwise) for classification and mean 337 

squared error and log likelihood for regression tasks. Because prediction is a central goal of 338 

both data-driven and process-based modeling efforts, estimating generalization error is 339 

critical for gaining confidence in a particular model for prediction tasks and selecting the best 340 

model and/or hyperparameters from a set of candidates. 341 

 342 

Unsurprisingly, the capability of a model to fit a given set of training data increases as 343 

its complexity increases. An underfitting model will generalize poorly because it is not 344 

complex enough to capture the range of variability of the target function. For example, an 345 

ANN with 1 hidden unit will likely fit the data poorly; as more layers and hidden nodes are 346 

added to the ANN, both the training and test errors decrease because of the added 347 

representation power. However, when the model complexity exceeds the degree that can be 348 

justified by the training data, the model becomes overfitted: although training error 349 

continuously decreases, test error starts to increase (Fig. 4). An overly complex model 350 

overfits the training data in that it may extract some of the noise. Consider as an example 351 

training an ANN with 𝑀 hidden units to fit 𝑛 data points that follow Gaussian distribution 352 

with zero mean and unit standard deviation. When 𝑀 ≥ 𝑛, the ANN can fit the data perfectly. 353 
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However, it tends to fail at generalizing to data it has not seen before. Besides number of 354 

parameters (weights for ANNs), model complexity is also manifested by the size of the 355 

parameters. When training an ANN, it is often observed that as training epochs elapse, 356 

training error decreases as the weights are adjusted and the model gets better at fitting the 357 

training data. However, at some point the generalization error starts to increase (Prechelt, 358 

1998).  359 

 360 

The general trend of training and test errors can be explained by statistical learning 361 

theory. Assuming that data points in the training and test sets are independent, identically 362 

distributed, it can be shown that the training error is usually lower than the test error. The 363 

expected squared error of a trained model on an unseen data point can be decomposed into 364 

three terms. The first term is the variance of the measurement error associated with the target, 365 

representing irreducible error. The second term is the square of the bias caused by the 366 

hypothesis space of the learning method, such as approximating a nonlinear function with a 367 

linear model. The third term is the variance of the fitted model. There is usually a tradeoff 368 

between bias and variance. A more complex model yields lower bias at the expense of higher 369 

variance and thus may be prone to overfitting (Hastie et al., 2009).  370 

 371 

In order to find the model that will yield low generalization error, the common 372 

practice is to randomly divide the dataset into training, validation, and test subsets. Shuffling 373 

is recommended so that the three subsets are approximately from the same distribution. A 374 

model is repeatedly fitted to the training set, each time using a different set of 375 

hyperparameters or machine learning algorithms. The generalization error of the fitted 376 

models will then be evaluated on the validation set. Finally, the best-performing combination 377 

of machine learning algorithm and hyperparameters is selected and evaluated with the test 378 

set.    379 

 380 

 381 
Figure 4. Schematic of trends in training and generalization errors as the model 382 

becomes more complex. When the model complexity increases, training error overall 383 

tends to decrease while test error increases, despite temporary fluctuations.  384 
 385 

Some machine learning algorithms have their own implementations for estimating 386 

generalization error. For example, random forest uses the out-of-bag error as an estimate. 387 

Cross-validation (CV) is a model-generic approach routinely used for hyperparameter 388 

selection especially when data size is not very large. CV partitions the examples (with known 389 

inputs and target) into a training and a validation set. Multiple rounds are performed, each 390 

time using a different data partition. The resulting error metrics (e.g., misclassification rate, 391 
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mean squared error) on the validation set are combined to estimate the generalization error of 392 

the model. Various implementations of CV exist, differing in how data is partitioned. Two 393 

commonly used implementations are leave-one-out (validation set consists of a single 394 

datapoint) and k-fold CV (validation set is one of 𝑘 subsets).  395 

 396 

A common practice to prevent overfitting and improve generalization performance is 397 

using regularization strategies. During training, the machine learning algorithm seeks to 398 

minimize the loss function that evaluates the misfit between the model and the given targets. 399 

For some applications, it may be desirable to impose preference to other behaviors of the 400 

learned model such as smoothness and sparsity. In order to achieve this goal, regularization 401 

techniques add a penalty to the loss function; the 𝐿1 and 𝐿2 norms of learned coefficients are 402 

often used as penalty, such as in Lasso and SVM, respectively. In addition to explicitly 403 

representing preference via a penalty term, regularization may be implemented implicitly. For 404 

example, the pruning technique reduces the complexity of a CART and alleviates overfitting. 405 

Training of ANNs often employs the early stopping strategy, which monitors the test error on 406 

a validation set and terminates the training when the test error continuously increases (Fig. 4). 407 

Regularization techniques specifically designed for deep learning will be described in Section 408 

2.3. 409 

 410 
2.2.3. Curse of dimensionality and variable selection 411 

In addition to the choice of machine learning algorithms and hyperparameters, the 412 

generalization error is affected by the selection of input variables. In hydrologic applications, 413 

a variety of observed and derived data may provide some information towards the problem of 414 

interest. However, including all relevant variables pose challenges to machine learning 415 

algorithms, known as the curse of dimensionality (Hastie et al., 2009). Dimension reduction 416 

techniques can be used to reduce input dimensionality and improve efficiency. For example, 417 

the principal component analysis (PCA) is a commonly used dimension reduction method, 418 

which extracts linear combinations of input variables that explain most of the variability in 419 

data and then uses the combinations as inputs to machine learning algorithms. A related 420 

method, linear discriminant analysis (LDA), is a supervised dimension reduction method that 421 

takes the target variable (i.e., class labels) into consideration when extracting linear 422 

combinations of input variables (Izenman, 2013). 423 

 424 

Dimension reduction can also be formulated as a variable selection problem, which 425 

has been studied extensively in the literature (George, 2000; Guyon and Elisseeff, 2003; 426 

Liang et al., 2008). Classical variable selection methods include backward elimination where 427 

variables are sequentially removed from the full model, forward selection where variables are 428 

sequentially added to the model, or combination of both (Blanchet et al., 2008). A variety of 429 

selection criteria can be used to determine which variable to remove or add, such as F-tests, t-430 

test, Akaike information criterion (AIC) and Bayesian information criterion (BIC) (Burnham 431 

and Anderson, 2004). In addition to these generic methods, some supervised machine 432 

learning algorithms have built-in variable selection function. Examples include Lasso 433 

(Section 2.1.2), CART and random forests (Section 2.1.5). PCA/LDA can also be used to 434 

obtain a reduced set of input variables. Although the above-mentioned automatic variable 435 

selection techniques are powerful tools to reduce the input dimension, they should not replace 436 

careful feature selection based on expert knowledge whenever such knowledge is available.    437 

 438 
2.3. Deep learning 439 
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2.3.1. Motivation 440 

Conventional machine learning techniques often do not perform well for complex 441 

tasks such as computer vision, speech recognition, and natural language processing. These 442 

tasks involve large volumes of natural data in the raw form, such as images, videos and text. 443 

Consider as an example an intensively studied benchmark, the MNIST (Modified National 444 

Institute of Standards and Technology) database. The database consists of normalized 445 

grayscale scanned images of digits (0 to 9) handwritten by human individuals. When 446 

applying a conventional machine learning algorithm, the pixels within an image are typically 447 

unfolded (or flattened) into a vector, and each pixel is treated independently. An ANN can be 448 

constructed with 𝑝 input units, 𝑝 being the total number of pixels within an image, and 449 

multiple hidden layers. These layers are fully connected in that the learning process will 450 

attempt to learn the weights connecting each pair of units in adjacent layers (Fig. 3a), leading 451 

to a large number of learnable parameters. This greatly increases the need for training data 452 

points to make the learning problem well posed and the difficulty for an optimization 453 

algorithm to find a solution. In addition, the pixel representation of an image does not 454 

account for spatial correlation among pixels and lacks certain invariant features such as 455 

rotation and shift.  456 

 457 

For many applications including the MNIST benchmark, careful handcrafting of 458 

features from raw data has been critical to achieve good performance with conventional 459 

machine learning algorithms. This feature engineering process relies on substantial manual 460 

efforts and domain expertise, and is application specific. When dealing with a large volume 461 

of data that have complex and nonlinear patterns, conventional machine learning with the 462 

handcrafted features is not flexible enough to extract these patterns (Najafabadi et al., 2015). 463 

Representation learning replaces manual feature engineering and automatically extracts, 464 

using a general-purpose learning procedure, representations of the raw data that might be 465 

useful for subsequent supervised learning tasks. Deep learning architectures stack multilayer 466 

neural networks to learn such representations. Each layer can be thought of as learning one 467 

aspect of the underlying structure of the data, and stacking layers composites the structures 468 

learned by individual layers. Research on deep learning theory suggests that such distributed 469 

representation endows deep learning with exponential advantages over conventional learning 470 

algorithms based on local representation (Bengio et al., 2013). It has been shown that deep 471 

networks can be efficiently trained by gradient descent methods (Rumelhart et al., 1986; 472 

Glorot et al., 2011), and greater depth generally leads to better generalization performance 473 

(Bengio et al., 2007; Ciregan et al., 2012; Goodfellow et al., 2016).  474 

 475 

Deep learning techniques take advantage of fast GPUs and increasing data availability 476 

and have achieved record performance in various computer vision, speech recognition and 477 

natural language processing tasks. They have also been shown to hold great promise in many 478 

domains of science and engineering. In this subsection, we briefly describe some of the deep 479 

learning architectures that are the most relevant to hydrologic applications.   480 

 481 
2.3.2. Convolutional Networks 482 

In order to overcome the limitations of traditional ANNs on the MNIST database, 483 

LeCun et al. (1990; 1998) handcrafted neural network architecture with locally connected 484 

layers and shared weights. These neural networks significantly outperformed the fully 485 

connected ANNs on experiments centered around the MNIST database. These pioneering 486 

efforts led to the development of convolutional networks (CNNs). In 2012, a deep and wide 487 
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CNN model, AlexNet (Fig. 5, Krizhevsky et al., 2012) was proposed and won the ImageNet 488 

Large Scale Visual Recognition Challenge and outperformed all conventional machine 489 

learning and computer vision approaches. As of today, CNNs have achieved remarkable 490 

successes in computer vision and related areas. Designed for multi-dimensional arrays, CNNs 491 

use convolution operations in place of fully connected matrix multiplication. A convolutional 492 

layer applies a kernel (or filter) that calculates a local weighted sum as the kernel slides 493 

through the input array. The number of learnable weights depends only on the kernel size and 494 

is usually much smaller than the size of the input array. Multiple kernels can be applied 495 

simultaneously to output a multi-channel image (Fig. 3b). Such sparse connectivity is the key 496 

advantage of CNN over classical ANNs with full connectivity (Goodfellow et al., 2016). The 497 

local weighted sums are then passed through a nonlinear activation layer, such as ReLU that 498 

applies the rectifier activation 𝑚𝑎𝑥(0, 𝑥), where 𝑥 is the local weighted sum. In this way, the 499 

convolutional layer extracts local motifs of the input array or output from the previous layer. 500 

Subsequently, a pooling layer merges local features by calculating local statistics (such as 501 

max) to reduce the dimension of representation (Fig. 3b) and preserve shift invariance 502 

properties. Multiple convolutional, nonlinear, and pooling layers can be stacked (Fig. 5) to 503 

extract hierarchical patterns where higher-level features are derived by composing lower-504 

level features (LeCun et al., 2015). Finally, the high-level features are usually flattened 505 

before passing through a fully connected layer for classification or regression (Fig. 3b and 5).  506 

 507 
Figure 5. The architecture of the AlexNet (Krizhevsky et al., 2012) consists of 508 

convolution, max-pooling, local response normalization (LRN), ReLU and fully 509 

connected (FC) layers.   510 
 511 
2.3.3. Recurrent Neural Networks for Sequence Modeling 512 

Recurrent Neural Networks (RNNs) are designed for modeling sequential data such as 513 

time series with some underlying temporal dynamics. An RNN digests one element (e.g., a 514 

word, streamflow at one time step) of the input sequence at a time and uses its hidden units to 515 

keep information learned from the past elements of the sequence. Therefore, we can “unroll” 516 

the RNN and consider it as a chain of recurrent neurons, each corresponding to one time step 517 

(Fig. 6). Similarly to the sparse connectivity of CNNs (i.e., sharing weights across different 518 

locations of the input multidimensional array), RNNs share weights across different locations 519 

(in time) in the input sequence. While the RNN architecture can represent complex dynamics, 520 

its training suffers from the well-known vanishing gradient problem. The backpropagated 521 

gradients either grow or shrink at each time step; after many time steps, the gradients will 522 

either explode (leading to unstable optimization) or, more likely, vanish. Almost zero 523 
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gradients greatly slow down the learning process because each iteration would apply a very 524 

small update to the weights (Bengio et al., 1994; Hochreiter, 1998).  525 

 526 

Long-short term memory (LSTM) is an RNN architecture proposed to overcome the 527 

vanishing gradient problem. LSTM and its variants have proven powerful for learning long-528 

term dependencies in time series (Graves, 2012; Greff et al., 2017). Each LSTM cell 529 

corresponds to one time step, repeats to form N recurrent layers, and retains past information 530 

in cell memory. Fig. 6 shows the classical LSTM architecture (Hochreiter and Schmidhuber, 531 

1997). At each time step 𝑡, the current input 𝑥𝑡 is combined with hidden state (ℎ𝑡−1) and cell 532 

memory (𝑐𝑡−1) from the previous time step to determine whether the input will be 533 

accumulated to cell memory 𝑐𝑡 according to the input gate 𝑖𝑡 and whether the past cell 534 

memory 𝑐𝑡−1 will be forgotten according to the forget gate 𝑓𝑡. The output gate 𝑜𝑡 then 535 

determines whether the hidden state ℎ𝑡 will be updated with the cell memory 𝑐𝑡.  536 

   537 

Figure 6. A recurrent neural network (RNN) with LSTM cells. At time step 𝑡, 𝑥𝑡 is the 538 

current input, 𝑐𝑡 is the cell memory, ℎ𝑡 is hidden state, 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 are the input, forget, and 539 

output gates, respectively, 𝑔𝑡 is the cell input activation vector, and ⊙ denotes element-540 

wise array multiplication. 541 

 542 

2.3.4. Other popular architectures 543 

Representation learning techniques are capable of automatically learning 544 

representations of the raw input, thus providing insights into the data and/or help with the 545 

subsequent supervised learning (Bengio et al., 2013). Examples include K-means that learns 546 

representations as the centroid of clusters, PCA that generates eigenvectors as a linear 547 

representation, and convolutional and pooling used in a CNN that learn motifs in the input 548 

image. In addition to these techniques, autoencoders are an important type of deep learning 549 

architecture for representation learning      (Goodfellow et al., 2016). An autoencoder 550 

attempts to learn a low dimensional representation of the data. A simple autoencoder consists 551 

of an input layer, a hidden layer, and an output layer. The sizes of input and output layers are 552 
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equal to the size of the input, while the hidden layer is typically smaller. As a result, the 553 

autoencoder must learn to compress information (encode) in the input and then reconstruct 554 

the input from the compressed representation stored in the hidden layer (decode). Further, we 555 

can impose desired properties on the learned representation, such as sparsity (sparse 556 

autoencoder) and robustness to noise (denoising autoencoder); these regularized autoencoders 557 

have proven effective in learning representations helpful for subsequent classification tasks 558 

(Vincent et al., 2010). Recently, several Bayesian autoencoders have been proposed, known 559 

as variational autoencoders, since variational algorithms are used to learn the probabilistic 560 

description of the latent representation (Kingma and Welling, 2014; Sønderby et al., 2016). In 561 

the Bayesian version of autoencoders, the encoder produces the (approximated) posterior 562 

distribution of the latent representation, and the decoder samples one or more realizations 563 

from the estimated posterior to generate reconstructions of the original input.  564 

 565 

Generative adversarial network (GAN) is another architecture for generative learning. 566 

GAN learns to generate new data with the same statistics as a given training set (usually 567 

images). A generative network and a discriminator compete with each other in the form of a 568 

zero-sum game (Goodfellow et al., 2014; Creswell et al., 2018). The generative network, 569 

typically based on deconvolutional layers, synthesizes candidates that are similar to the 570 

training data with the objective to “fool” the discriminator network, while the discriminator 571 

attempts to distinguish synthesized candidates from the true data. Through this process, the 572 

GAN gets better at generating synthetic data that resemble the training data. Because the 573 

generative network is implicitly trained through the discriminator, and the discriminator is 574 

being updated, GAN is particularly suitable for unsupervised learning although it can also be 575 

used for supervised and semi-supervised learning where training data are scarce. GANs have 576 

attracted wide attention due to potential use for malicious applications such as producing fake 577 

photographs and videos. As discussed in Section 3.2.1, GANs have important applications in 578 

inverse modeling of geologic media.  579 

 580 

Finally, in recent years attention has become a very influential idea in the deep 581 

learning community. Attention enables a deep network to focus on certain parts of the input 582 

data in a way similar to how human beings would pay attention to different regions of an 583 

image or correlate words at different locations in sentences. This is achieved through learning 584 

importance weights that describe how strongly the target is correlated to the elements of input 585 

data. There are various attention mechanisms designed to accompany CNNs, RNNs and other 586 

architectures. They have achieved high performance for many tasks such as image captioning 587 

(Vinyals et al., 2015) and translation (Vaswani et al., 2017; Chaudhari et al., 2020).  588 

 589 
2.3.5. Common practices and other considerations 590 

Learning the weights for a deep network is usually a hard problem, and standard 591 

gradient descent and random initialization often perform poorly (Glorot and Bengio, 2010). 592 

As a result, various initialization strategies and variants of gradient descent have been 593 

proposed (e.g., Bottou, 2010; Saxe et al., 2011; Sutskever et al., 2013; Kingma and Ba, 594 

2015). Because deep learning often deals with very large amounts of data posing 595 

computational challenges, a common practice is to divide the datasets into small subsets, 596 

called a mini-batch. At each iteration, a mini-batch is loaded and backpropagation is 597 

executed, leading to mini-batch gradient descent (Li et al., 2014). This is repeated until all 598 

mini-batches have been used, concluding one epoch. The training process lasts for multiple 599 

epochs; the number of epochs is a user-specified parameter but may be determined using the 600 
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early stopping strategy. Learning rate plays an important role in the training and 601 

generalization performance of deep networks. At the simplest form it can be specified as a 602 

constant hyperparameter. A number of methods have been developed recently that adapt the 603 

learning rates and training progresses, such as Adam (Kingma and Ba, 2015).  604 

 605 

The regularization strategies for conventional machine learning algorithms discussed 606 

in Section 2.2.2 mostly apply to deep learning as well. In addition to those strategies, dropout 607 

(Srivastava et al., 2014) is a computationally efficient and powerful method specifically 608 

designed for deep learning. Dropout can be thought of as a practical approximation to the 609 

idea of bagging in ensemble learning (such as the random forest). Traditional bagging 610 

requires training and retaining multiple models and would become computationally 611 

unaffordable for very large neural networks. Dropout omits a portion (as determined by 612 

dropout rate) of the weights during training, thus regularizing the complexity (and variance) 613 

of the learned network. More precisely, each time a mini-batch is loaded, only the weights of 614 

a randomly selected subset of the neurons will be updated by backpropagation. The added 615 

cost of applying dropout at each step to a specific network is negligible. It was shown that 616 

dropout is more effective than other regularization methods including 𝐿1 and 𝐿2-norm based 617 

(Srivastava et al., 2014). 618 

 619 

Hyperparameters such as learning rate and dropout rate typically need to be tuned to 620 

improve generalization performance. Methods such as grid-search work well for conventional 621 

machine learning methods but may become computationally expensive for deep learning. For 622 

an overview of automatic hyperparameter optimization algorithms and general 623 

recommendations for manual tuning, readers are referred to Goodfellow et al. (2016) and 624 

Hutter et al. (2019). 625 

 626 
3. APPLICATIONS IN HYDROLOGIC SCIENCES 627 

3.1. Machine Learning as a Stand-alone Model 628 

3.1.1. Detecting patterns and events from remote sensing data 629 

The recent growth in hydrologic data volume has been boosted largely by increasing 630 

availability of remote sensing data. Remote sensing provides measurements directly or 631 

indirectly related to the water cycle with unprecedented spatial coverage. While some 632 

products have been available for decades, recently remote sensing is increasingly used as 633 

more products become available and cyberinfrastructure advances lower the barriers to 634 

accessing and using these data. Particularly in areas where in situ monitoring networks are 635 

sparse or missing, remotely sensed data are an important source of information for large scale 636 

monitoring of patterns and events related to hydrologic sciences as well as estimating key 637 

hydrologic variables (Fig. 7). This section briefly reviews applications in which machine 638 

learning is used for classification; regression applications will be discussed in Section 3.1.2.  639 

Machine learning is being used to identify water-related land cover changes and land 640 

surface features from remote sensed data, often leveraging cloud computing platforms (e.g., 641 

Google Earth Engine, Gorelick et al., 2017) to process large quantities of geospatial data 642 

(e.g., Deines et al., 2017; Gao et al., 2018; Cho et al., 2019; Yuan et al., 2020 and references 643 

therein). For example, Deines et al. (2017) used a random forest classifier to identify irrigated 644 

areas in the High Plains, an arid to semi-arid region, based on high resolution multi-spectral 645 

satellite imagery. In another study, a set of novel input features, such as weather sensitive 646 
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remote sensing indices of a sub-humid area, were hand crafted to enhance the contrast 647 

between neighboring rainfed and irrigated areas; these features then enabled a random forest 648 

classifier to achieve satisfactory performance in mapping irrigated areas (Xu et al., 2019, Fig. 649 

8). This type of application often has a large number of potential input variables with high 650 

correlation among some of the inputs. Random forest automatically performs feature 651 

selection and is robust when collinearity exists, making it particularly suitable for this and 652 

similar applications. On the other hand, deep learning algorithms may be promising 653 

alternatives for bypassing feature engineering efforts. Deep learning was recently applied in 654 

climate science to detection of extreme weather events such as tropical cyclones, atmospheric 655 

rivers and weather fronts. Detecting such extremes have traditionally relied on human 656 

expertise and subjective detection thresholds. As introduced in Section 2.3.2, convolutional 657 

layers can automatically extract patterns from image-like data, making them suitable for 658 

climate pattern identification from massive climate datasets (Liu et al., 2016; Racah et al., 659 

2017; Kim et al., 2019). 660 

 661 

Figure 7. Machine learning has been used in various hydrologic applications in stand-662 

alone mode or integrated with process-based modeling. Machine learning can process 663 

multi-type data to identify hydrologic events and estimate variables (1), approximate 664 

hydrologic processes and generate new knowledge regarding the processes (2), aid in 665 

parameterization of process-based models, develop fast surrogates (4), and correct the 666 

bias of process-based models (5). The current research frontier is to explore hybrid 667 

modeling that integrates physical knowledge with machine learning to achieve 668 

improved prediction accuracy and interpretability (5, 6) (Karpatne et al., 2019; 669 

Reichstein et al., 2019). Arrows indicate information flow. 670 
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 671 

Figure 8. A random forest (RF) classifier was developed to map irrigated fields at 30 m 672 

resolution for a subhumid temperate region. (a) Top 30 (out of 98) important features as 673 

identified by RF. Different colors indicate categories of features, such as weather-674 

sensitive remote sensing indices. (b) National Agriculture Imagery Program (NAIP) 675 

aerial image showing irrigated farms with varying sizes. NAIP is shown for visual 676 

comparison and not used by the RF classifier. (c) Weather-sensitive GI calculated from 677 

remote sensing images that immediately followed a dry period. (d) Segment of irrigation 678 

probability map generated by RF for 2012. Areas not classified as corn or soybeans are 679 

shown in dark. Recreated from Xu et al. (2019) under Creative Common CC BY 680 

License.  681 

3.1.2. Estimating hydrologic variables 682 

Hydrologic variables such as precipitation, snow water equivalent (SWE), 683 

evapotranspiration (ET), and soil moisture often exhibit high spatial and temporal variability. 684 

Remote sensing products provide valuable information regarding the variability of these 685 

variables where ground stations do not exist or are sparse. Because these hydrologic variables 686 

are not directly measured by the payload onboard a satellite or UAV, they are usually 687 

estimated based on a presumed relationship between the variable and signals collected by the 688 

payload and covariates. Machine learning algorithms are powerful tools for this purpose 689 

because they can easily incorporate various types of input data without resorting to presumed 690 
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relationships. In particular, GPR is a popular choice because it can enforce local smoothness, 691 

which is often desirable for hydrologic variables.   692 

 693 

Estimation of precipitation is critical for climatic and hydrologic research. 694 

PERSIANN and its variants are arguably the most successful machine learning-derived, 695 

remote sensing-based precipitation estimates (Sorooshian et al., 2000; Ashouri et al., 2015; 696 

Tao et al., 2016). Earlier versions of PERSIANN used the classical ANN to estimate 697 

precipitation from satellite longwave infrared imagery. Recently, Tao et al. (2016) used a 698 

stacked denoising autoencoder to improve estimation accuracy; the deep network was shown 699 

as able to substantially alleviate bias and false alarms. A follow-up study combined 700 

PERSIANN precipitation with LSTM to provide short-term precipitation forecast (Akbari 701 

Asanjan et al., 2018). Motivated by the spatiotemporal correlation structure underlying the 702 

precipitation field, the convolutional layer and LSTM architectures have been combined and 703 

applied to precipitation nowcasting from radar data (Shi et al., 2015; Shi et al., 2017). 704 

Conventional machine learning and deep learning methods have also been used for statistical 705 

downscaling and merging spaceborne, ground-based, and rain gauge precipitation 706 

measurements (Kleiber et al., 2012; Chen, H. et al., 2019; Pan et al., 2019; Vandal et al., 707 

2019). 708 

 709 

Machine learning methods have been used to estimate SWE (Bair et al., 2018; 710 

Broxton et al., 2019), ET (e.g., Ke et al., 2016; Xu, T. R. et al., 2018) and soil moisture (e.g., 711 

Ahmad et al., 2010; Zhang et al., 2017; Aboutalebi et al., 2019; Lee et al., 2019) from remote 712 

sensing and in situ measurements. For example, Bair et al. (2018) estimated SWE in the 713 

watersheds of Afghanistan in real time using physiographic and remote sensing data. Ke et al. 714 

(2016) used machine learning and 30-m resolution Landsat imagery to downscale MODIS 1-715 

km ET. Aboutalebi et al. (2019) estimated moisture content of different soil layers from high-716 

resolution UAV multi-spectral imagery and compared the performance of genetic 717 

programming (a combination of an evolutionary algorithm and artificial intelligence), ANN, 718 

and SVM. They found that the performance of machine learning algorithms increases for 719 

deeper soils, and that genetic programming achieved significantly higher accuracy than SVM 720 

and ANN at the deepest validation point. In addition, genetic programming outputs an 721 

equation that can be potentially transferred to other regions. At a larger scale, Zhang et al. 722 

(2017) used deep learning to estimate soil moisture for all croplands of China from Visible 723 

Infrared Imaging Radiometer Suite (VIIRS) raw data. Assessed using in situ measurements, 724 

the estimated soil moisture was more accurate than the Soil Moisture Active Passive (SMAP) 725 

active radar soil moisture and the Global Land Data Assimilation System (GLDAS) products. 726 

In addition to remotely sensed data, machine learning algorithms can also be used to leverage 727 

in situ moisture measurements. For example, Andugula et al. (2017) used GPR to upscale 728 

point-based soil moisture measurements from a dense sensor network.  729 

In groundwater hydrology, there are emerging applications of machine learning. 730 

Seyoum et al. (2019) estimates groundwater level anomaly by downscaling GRACE 731 

Terrestrial Water Storage Anomaly (TWSA). Smith and Majumdar (2020) used random 732 

forests to map land subsidence due to groundwater pumping based on ET, land use, and 733 

sediment thickness. Various studies have illustrated the use of conventional machine learning 734 

algorithms to map groundwater potential based on topographic, land use, and geologic factors 735 

(e.g., Naghibi et al., 2017; Chen et al., 2019; Kordestani et al., 2019). The mapping accuracy 736 

was found sensitive to the size of the training dataset (Moghaddam, D.D. et al, 2020). 737 

Moghaddam, M.A. et al. (2020) estimated the flux between a river and groundwater from 738 
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high frequency observations of subsurface pressure and temperature using CART and 739 

gradient boosting.    740 

In addition to the above studies, machine learning has been used in environmental 741 

monitoring applications such as predicting recreational water quality advisories (Brooks et 742 

al., 2016), estimating groundwater nitrate concentration (Nolan et al., 2015), and identifying 743 

facilities likely to violate environmental regulations (Hino et al., 2018).   744 

 745 

3.1.3. Approximating hydrologic processes  746 

Various studies have used machine learning to model hydrologic processes such as 747 

runoff generation. Rainfall-runoff modeling and streamflow forecasting have profound 748 

implications for water resources management and have been investigated for decades. 749 

Applications of machine learning to rainfall-runoff modeling can be dated back to the 1990s 750 

(Buch et al., 1993; Kang et al., 1993; Hsu et al., 1995; Smith and Eli, 1995). While the 751 

earliest applications were focused on ANNs, later studies have employed a variety of 752 

conventional machine learning algorithms (Yaseen et al., 2015 and references therein), such 753 

as SVM (Asefa et al, 2006; Rasouli et al., 2012; Adnan et al., 2020), GPR (Rasouli et al., 754 

2012), multivariate adaptive regression splines (Adnan et al., 2020), and ANN-based methods 755 

(Rasouli et al., 2012; Ren et al., 2018; Boucher et al., 2020). There is no consensus on a 756 

single machine learning algorithm that outperforms others; in many applications they 757 

achieved satisfactory results at various time and spatial scales and across different hydrologic 758 

regimes.  759 

 760 

Conventional machine learning algorithms, with the exception of autoregressive 761 

models, do not have mechanisms to explicitly represent the temporal evolution of the 762 

hydrologic processes. Therefore, applying conventional machine learning to rainfall-runoff 763 

modeling requires hand-crafting a set of input features that encapsulate some “history” of the 764 

watershed, such as lagged meteorological time series. Recently, there has been a growing 765 

interest in applying RNNs, LSTM in particular, to rainfall-runoff modeling and streamflow 766 

forecasting because these deep learning architectures can represent long-term dependencies 767 

(Kratzert et al., 2018; Kratzert et al., 2019b; Jiang et al., 2020; Tenant et al., 2020). For 768 

example, Kratzert et al. (2018) used LSTM to simulate daily streamflow using meteorological 769 

forcings including daily precipitation, maximum and minimum temperature, shortwave 770 

downward radiation, and humidity. It was shown for some watersheds that the LSTM was 771 

able to use its cell memory to approximate the watershed storage dynamics such as snow 772 

accumulation and melt within the annual cycle. This likely explains the superior performance 773 

of LSTM over RNN (Fig. 9). In addition, it was found that LSTM achieved overall good 774 

performance as a regional model when it was trained using data from many catchments. 775 

When the regional LSTM model was fine tuned for individual catchment separately, it 776 

outperformed a commonly used hydrologic model (SAC-SMA combined with Snow-17) 777 

calibrated for individual catchments in the CAMELS dataset. A follow-up study further 778 

investigated the capability of LSTM as a regional model and modified the vanilla LSTM 779 

architecture to embed catchment characteristics as static inputs in addition to time-varying 780 

meteorological forcings (Kratzert et al., 2019b). The resulting LSTM model outperformed 781 

several lumped and distributed hydrological models. Besides rainfall-runoff modeling, LSTM 782 

has been used for short-term flood forecasting with lead time of hours to days (e.g., Hu et al., 783 

2019; Lv et al., 2020; Xiang et al., 2020). For example, Hu et al. (2019) developed a spatio-784 

temporal flood forecasting framework where proper orthogonal decomposition and SVD 785 
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were applied to reduce the dimension of the large training data and the computational cost 786 

associated with training and forward evaluation of the LSTM model. Ding et al. (2019) 787 

combined attention mechanisms with LSTM; the resulting model outperformed LSTM 788 

without attention, SVM, and ANN. Besides LSTM, other deep learning architectures such as 789 

autoencoders have also been used for streamflow forecasting (Liu et al., 2017). 790 

 791 

 792 
Figure 9. Observed and simulated daily streamflow at USGS Gage 13340600 for two 793 

water years. LSTM outperformed RNN during the validation period. Precipitation is 794 

partitioned into rain or snow based on minimum temperature being above or below 795 

zero. Adapted from Kratzert et al. (2018) under Creative Commons Attribution 796 

License. 797 

 798 

Machine learning algorithms have been used to emulate dynamic processes that 799 

govern key hydrologic variables including ET and soil moisture (e.g., Torres-Rua et al., 2011; 800 

Fang et al.; 2017; Zhao et al., 2019; Fang and Shen, 2020). Torres-Rua et al. (2011) used the 801 

relevance vector machine algorithm to forecast daily PET under limited climate data 802 

conditions. Zhao et al. (2019) developed a physics-constrained RNN model to predict ET by 803 

embedding surface energy conservation into the loss function. Fang et al. (2017) used an 804 

LSTM to reproduce SMAP surface soil moisture content product over CONUS. An LSTM 805 

was trained using the SMAP product as the target, and meteorological forcings and outputs 806 

from land surface models were used as inputs. The LSTM model was able to reproduce the 807 

soil moisture dynamics with higher accuracy than regularized linear regression, 808 

autoregression, and a simple ANN. 809 

 810 

In the groundwater hydrology community, there is also a growing body of research 811 

applying machine learning techniques. Some of these studies are focused on predicting 812 

groundwater level from meteorological variables using conventional machine learning (Yoon 813 

et al., 2011; Sahoo et al., 2017; Wunsch et al., 2018; Guzman et al., 2019) and deep learning 814 

(Ghose et al., 2018; Zhang et al., 2018; Ma et al., 2020). Other studies have investigated the 815 

potential of machine learning for groundwater flow simulation. Because training data is often 816 

scarce for this type of applications, physical constraints have been found useful. Tartakovsky 817 

et al. (2020) used fully connected DNNs for steady state saturated and unsaturated flow. The 818 

DNNs were trained to approximate the hydraulic conductivity and spatially varying state 819 

variables (head for saturated flow and pressure for unsaturated flow) with sparse 820 
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observations. Physical constraints were introduced by adding the residual of the governing 821 

equation (Darcy’s Law/Richards equation) to the loss function. The approach was tested on 822 

synthetic case studies and achieved satisfactory accuracy of simulating the head-conductivity 823 

relationships. Wang et al. (2020) used a similar approach for transient saturated flow 824 

simulation and added the residuals of both the governing equation and boundary conditions to 825 

the loss function. The physically constrained DNN yielded a more physically feasible 826 

solution and lower generalization error than a DNN without these constraints.  827 

 828 
3.1.4. Mining relationships among hydrologic variables for knowledge discovery 829 

Disentangling the interactions among multiple variables is important for 830 

understanding the dynamic behavior of the water systems. The increasing volume of 831 

observations provides opportunities for using data-driven techniques to identify the 832 

relationships among hydrologic variables without relying on physical knowledge. For 833 

example, Goodwell and Kumar (2017) used metrics based on information theory to unravel 834 

forcing and feedback relations in an ecohydrological system using high frequency data from a 835 

flux tower. Zeng et al. (2017) used SVM to analyze the competitive or complementary 836 

relationship between reservoir operation decisions for hydroelectricity production and water 837 

releases for irrigation. Another potential venue of applying machine learning for knowledge 838 

discovery is mining relations that cannot be modelled from a physical process-based 839 

perspective such as the two-way feedback between human and water systems (Pande and 840 

Sivapalan, 2017; Meempatta et al., 2019). Interpretable machine learning algorithms such as 841 

tree-based methods and Lasso hold promise for this purpose because the learned models can 842 

be interpreted to derive rules or functional relationships. For example, Hu et al. (2017) used 843 

directed information graphs and boosted regression trees to derive rules of farmers’ pumping 844 

behavior in a case study in the US Midwest. In addition, the successes big data and deep 845 

learning have achieved in predicting human behavior (e.g., Van den Oord et al., 2013; 846 

Elkahky et al., 2015; Phan et al., 2017; Sohangir et al., 2018) suggest they could be promising 847 

tools to model human decision making such as irrigation and adaptation to global change.  848 

 849 
3.2. Integration of Machine Learning with Process-based Modeling 850 

Physical process-based numerical models have long been the primary quantitative 851 

tools in hydrologic sciences. Here we briefly review usage of machine learning integrated 852 

with process-based modeling to facilitate or improve one or more components of the latter 853 

(Fig. 7).  854 

 855 
3.2.1. Parameterization 856 

Most process-based models require specification of parameters. Often, the parameters 857 

do not correspond to directly measurable quantities, or it is infeasible to measure these 858 

quantities at the spatial resolution and scale required by the model. In recent years, deep 859 

learning in particular has been used to estimate properties of geologic media, such as 860 

permeability and diffusivity directly from micro-CT images of porous media (Kamrava et al., 861 

2020; Wu et al., 2018; Wu et al., 2019). For example, Wu et al. (2018) demonstrated the 862 

utility of a physics-informed deep network for fast prediction of permeability directly from 863 

images. They first generated images of synthetic porous media, and then performed lattice 864 

Boltzmann simulations to calculate the permeability of each sample image. This resulted in a 865 

dataset that was used to train a modified CNN. The convolutional layers extract latent 866 

features from the image that could be relevant to permeability; an MLP then digests the 867 
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extracted features along with two physical parameters, porosity and specific surface area, to 868 

estimate permeability. The physics-informed CNN achieved high test accuracy and 869 

outperformed regular CNN without physical parameters. Because fluid dynamics simulations 870 

such as lattice Boltzmann are computationally expensive, once trained the deep network can 871 

greatly reduce the computational cost for predicting permeability of a new image. 872 

 873 

Generative deep learning architectures such as GANs and variational autoencoders are 874 

capable of generating data that preserve some desired properties. They are well suited for 875 

reconstruction of geologic media, often in order to generate realizations for subsequent 876 

stochastic simulations in subsurface hydrology. Laloy et al. (2017) used the variational 877 

autoencoder to construct a low-dimensional latent representation of complex binary geologic 878 

media with a relatively low number of parameters, thus making it possible to perform time 879 

consuming Markov Chain Monte Carlo (MCMC) sampling. The autoencoder outperformed 880 

the state-of-the-art inversion technique using multi-point statistics and sequential geostatistics 881 

simulation. They noted, however, that the variational autoencoder model requires several tens 882 

of thousands of training images. A follow-up study (Laloy et al., 2018) used GANs to replace 883 

the variational autoencoder in order to reduce training data needs and extend to 884 

multicategorical data (geologic facies).  885 

 886 

In surface hydrology, machine learning has been used for regionalization of rainfall-887 

runoff model parameters, which is an important step towards runoff prediction in ungauged 888 

basins (Beck et al., 2016; Jiang et al., 2020). For example, Beck et al. (2016) developed 889 

global maps of parameters for a simple conceptual rainfall-runoff model based on climatic 890 

and physiographic factors, using a model trained on calibrated parameters from more than 891 

1,700 catchments. A related line of research used streamflow signatures to delineate 892 

catchments groups with distinct hydrological behaviors, wherein clustering analysis and 893 

decision trees were used for this purpose (e.g., Toth, 2013; Sawicz et al., 2014; Boscarello et 894 

al., 2016). Chaney et al. (2016) used random forest to develop probabilistic estimates of soil 895 

properties at 30-m resolution for CONUS based on geospatial environmental covariates such 896 

as distribution of uranium, thorium, and potassium.   897 

 898 

3.2.2. Surrogate modeling 899 

Recently, there has been increasing interest in the use of machine learning for 900 

surrogate modeling for optimization (Asefa et al., 2005; Cai et al., 2015; Wang et al., 2014; 901 

Wu et al., 2015) and uncertainty quantification (Xu et al., 2017; Yang et al., 2018; Zhang et 902 

al., 2020). Recent studies have also used deep learning for uncertainty quantification (Hu et 903 

al., 2019; Laloy and Jacques, 2019; Mo et al., 2019a; 2019b). Many process-based models, 904 

such as groundwater flow and solute transport models, are computationally expensive, 905 

making it challenging to perform analyses that require running the model for many times 906 

(Asher et al., 2015). Surrogate models emulate process-based model simulation results as a 907 

function of inputs and/or parameters but run much faster. Machine learning techniques are 908 

powerful tools to represent nonlinear functions and thus well positioned for surrogate 909 

modeling. For example, Cai et al. (2015) used SVM to develop a fast surrogate of a 910 

watershed simulation model (SWAT); the surrogate model was coupled with a stochastic 911 

optimization model within a decision-support framework to assess the roles of strategic 912 

measures and tactical measures in drought preparedness and mitigation under different 913 

climate projections. Wu et al. (2015) used an adaptive approach, where the surrogate model is 914 

adaptively refined during the search for optima. Xu et al. (2017) used random forest and 915 
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SVM to construct fast surrogates of a regional groundwater flow model for Bayesian 916 

calibration. Mo et al. (2019a; 2019b) used a convolutional encoder-decoder architecture to 917 

build surrogate models to facilitate groundwater contaminant source identification and 918 

uncertainty quantification of a multiphase flow problem, respectively. Laloy and Jacques 919 

(2019) compared three surrogate modeling techniques (GPR, polynomial chaos expansion, 920 

and DNN) for sensitivity analysis and Bayesian calibration of a reactive transport model. 921 

DNN achieved the best emulation accuracy even though the training set is relatively small 922 

(from 75 to 500 samples). However, the DNN surrogate model yielded the worst performance 923 

for the calibration task and led to posterior distribution far away from the truth. A possible 924 

cause is DNN overfitting the training data, resulting in small but biased prediction error with 925 

a complex structure. In contrast, GPR-based surrogate model approximated the true posterior 926 

well. The findings suggest the need for further investigation on quantification of uncertainty 927 

introduced by surrogate modeling. Zhang et al. (2020) used GPR and PCE to construct 928 

surrogates for Bayesian calibration of a groundwater transport model. They adaptively 929 

refined the surrogates, thus reducing surrogate error, as the posterior distribution is being 930 

approximated. For uncertainty quantification, GPR is a convenient choice since it naturally 931 

fits into the Bayesian framework (Kennedy and O’Hagan, 2001). In addition, GPR can 932 

enforce local smoothness, which may be beneficial for parameter estimation and optimization 933 

(Razavi and Tolson, 2013; Laloy and Jacques, 2019). 934 

 935 
3.2.3. Bias correction  936 

Process-based models are generally considered more reliable than machine learning-937 

based data-driven models for predictive tasks such as projection under climate change. 938 

However, it has been recognized that process-based models may yield biased simulation 939 

results due to errors in forcing data, incorrect parameters, and/or simplified or improper 940 

conceptualization of the physical processes despite advances in understanding of hydrologic 941 

processes and development of sophisticated model structures (Liu and Gupta, 2007; Demissie 942 

et al., 2015; Xu et al., 2017). Machine learning techniques may be able to learn from 943 

observational data to recover information not represented by process-based models. Because 944 

process-based and data-driven modeling have complementary strengths, they can be 945 

combined to yield more accurate predictions. Conventional machine learning techniques have 946 

proven effective in correcting the bias of surface (Abebe and Price, 2003; Solomatine and 947 

Shrestha, 2009; Pianosi et al., 2012; Evin et al., 2014 and references therein) and subsurface 948 

hydrologic models (Demissie et al., 2009; Xu et al., 2015; Tyralis et al., 2019). Recently, 949 

there is emerging research applying deep learning for bias correction. Sun et al. (2019) used 950 

CNN to correct the mismatch between NOAH-simulated terrestrial water storage anomaly 951 

(TWSA) and GRACE products. Nearing et al. (2020) used LSTM to process the output of a 952 

calibrated conceptual rainfall-runoff model and achieved better accuracy than using each 953 

model alone. Frame et al. (2020) applied a similar approach to post-process the daily 954 

streamflow predictions of the National Water Model (NWM), leading to substantial 955 

improvements. The LSTM performance increased when NWM states and fluxes were added 956 

as inputs. 957 

 958 
4. CHALLENGES AND OPPORTUNITIES 959 

In the past, application of machine learning in hydrology and other disciplines of 960 

geosciences had been largely hindered by three primary challenges. These challenges include 961 

possible degradation of generalization error, the lack of physical interpretability and 962 

constraints, and small sample size. Even with regularization strategies implemented, a trained 963 
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machine learning model may still generalize poorly. This issue is exacerbated by the 964 

relatively small training dataset available in hydrologic applications as well as the need to 965 

predict under nonstationary conditions such as those induced by climate change. Hydrologic 966 

applications are also known to exhibit high degrees of spatial heterogeneity. Most previous 967 

applications of machine learning in hydrology are limited to one or a few test cases, and the 968 

machine learning models developed for a limited number of sites are likely not transferable to 969 

other regions where training data is scarce. Although the extrapolation problem exists even 970 

for process-based models, it is particularly acute for machine learning methods partly because 971 

of their flexibility of adapting to a wide range of functional relationships and lack of physical 972 

constraints. In addition, machine learning may also fall short of predicting emerging patterns. 973 

 974 

A second major challenge lies in the lack of physical interpretability of machine 975 

learning models. With few exceptions (e.g., Lasso, CART), most machine learning models 976 

learn functional relationships that are very complicated to comprehend. It is usually difficult, 977 

if at all possible, to draw physical understanding from the learned model. In addition to the 978 

models themselves being hard to interpret, they may provide predictions that cannot be easily 979 

understood, are implausible, and/or lack physical consistency. The lack of transparency raises 980 

questions about the appropriateness of using machine learning models for decision making 981 

that has high stakes.  982 

 983 

Because of this and also given the importance of knowledge discovery in any 984 

discipline of physical sciences, developing approaches to probe into these models and 985 

inherently interpretable machine learning models is crucial. In recent years, there has been a 986 

surge of work on the topic of “explainable AI” within the deep learning community (see 987 

Gilpin et al., 2018; Rudin et al., 2019; Samek and Müller, 2019 and references therein). In the 988 

hydrology community, interpreting deep learning models is also gaining attention (Shen, 989 

2018; Ding et al. 2019; Kratzert et al., 2019a).  990 

 991 

A current research frontier is to integrate knowledge about physical processes with 992 

machine learning. Process-based modeling and data-driven modeling have complementary 993 

strengths and weaknesses, and combining them in multiple ways provide exciting 994 

opportunities to address the above-mentioned challenges. Karpatne et al. (2017) and 995 

Reichstein et al. (2019) provide comprehensive recommendations on possible ways physical 996 

knowledge and machine learning can be integrated. Here, we highlight a few integration 997 

mechanisms that have proven to be promising in hydrologic applications. First, physical 998 

knowledge can be incorporated as regularization terms in the loss function. In this way, the 999 

learned model is forced to respect physical constraints such as mass and energy conservation 1000 

(de Bezenac, 2019; Jia et al., 2019; Tartakovsky et al., 2020; Wang et al., 2020). Second, a 1001 

hybrid model can consist of a process-based component responsible for physical processes 1002 

that are well understood and a machine learning component dealing with the less understood 1003 

processes (Ren et al., 2018; Sun et al., 2019). In some cases, it may be possible to encode the 1004 

physical knowledge expressed as ordinary or partial differential equations into the deep 1005 

learning architecture (Jiang et al., 2020). When explicit encoding is not possible, an 1006 

alternative is to augment training data of the machine learning model with simulation results 1007 

generated by a process-based model (Jia et al., 2019). This provides two-fold benefits: more 1008 

training data and the potential to learn physical knowledge, potentially related to predicting 1009 

under nonstationary conditions, from the augmented training data. It has been shown in some 1010 

studies discussed above and reviewed in Section 3 that incorporating physical knowledge 1011 

improves the generalization performance of the machine learning model. 1012 
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 1013 

A third challenge arises from small sample size in hydrologic applications. Despite 1014 

the fast-growing hydrologic data availability, data are still scarce in some applications, 1015 

especially when data are expensive or time-consuming to collect. For example, there may be 1016 

a limited amount of ground truth of the output variable, or available training data may have 1017 

imbalanced classes due to sampling bias or the output variable of interest being a low 1018 

probability event (e.g., Deines et al., 2017; Xu et al., 2019). In addition, information does not 1019 

necessarily increase linearly with data amount. For example, one year of streamflow 1020 

observations at 15-min interval (~35,040 data points) is likely insufficient to properly train a 1021 

machine learning model for rainfall-runoff modeling due to autocorrelation and the limited 1022 

range of the hydrologic regime the training data covers. The importance of the 1023 

“informativeness” of the data (Gupta et al., 1998) has been investigated in various studies 1024 

both theoretically (Gupta and Sorooshian, 1985) and empirically (Yapo et al., 1996; 1025 

Boughton, 2007; Singh and Bárdossy, 2012). These studies provide valuable insights into 1026 

determining the amount of data needed to train machine learning models in hydrologic 1027 

context. Ayzel and Heistermann (2021) train deep learning-based rainfall-runoff models for 1028 

six CAMELS watersheds using varying data length and found that deep learning models 1029 

require longer data to calibrate than a conceptual hydrologic model, although their 1030 

performance catches up quickly with increasing data length. Their findings suggest that in 1031 

practice it may require less data to train the deep learning architectures than predicted by 1032 

theoretical bounds of sample size established in deep learning literature (e.g., Du et al., 2018). 1033 

Problems associated with small sample size may be alleviated by the above-mentioned 1034 

physics-informed machine learning methods and borrowing ideas from unsupervised 1035 

learning, semi-supervised learning (Zhu and Goldberg, 2009; Kingma et al., 2014; Ding et 1036 

al., 2018) or active learning (Settles, 2011) to utilize available data more efficiently (Racah et 1037 

al., 2017; Karpatne et al., 2019). 1038 

 1039 

Related to the problem of small sample size is the juxtaposition of multi-source, 1040 

multi-type, multi-scale data with various accuracy. Machine learning algorithms do not have 1041 

a mechanism to explicitly account for such data heterogeneity. This can be justified by the 1042 

homogeneity of data involved in typical machine learning and deep learning applications 1043 

(e.g., a dataset of images or sentences). In contrast, hydrologic applications often encounter 1044 

variables with different physical meaning, data representative at various scales (e.g., point-1045 

based ground stations, satellite imagery at different resolutions and sampling frequency), and 1046 

noisy observations. In addition, measurements may contain bias and complex error structure 1047 

that violate the commonly used white noise assumption. When these data are used as inputs 1048 

and training targets, the data heterogeneity will likely affect the learning outcome. One way 1049 

to account for heterogenous errors associated with training targets is to weigh the loss 1050 

measured at each target inversely proportional to its uncertainty (Kendall et al., 2018) 1051 

similarly as in weighted least squares regression (Tasker, 1980). However, methods to handle 1052 

general input data uncertainty are still lacking.  1053 

      1054 

Appropriately representing and propagating uncertainty is crucial for the robustness of 1055 

predictions provided by the machine learning models particularly when they are trained with 1056 

limited data and/or used under nonstationary conditions. Except for a few algorithms (e.g., 1057 

GPR, Lasso), there has been a lack of theory for uncertainty quantification of conventional 1058 

machine learning and deep learning models (Abdar et al., 2020). Some studies used ad hoc 1059 

methods as a post-processing analysis to obtain prediction intervals (e.g., Solomatine et al., 1060 

2009; Xu et al., 2015). Ensemble learning methods (e.g., random forest) can produce 1061 
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uncertainty estimates by summarizing output from each ensemble member (Meinshausen, 1062 

2006; Tyralis et al., 2019). Ensemble methods have recently been applied to deep networks 1063 

but tend to be computationally expensive (Osband et al., 2016; Pearce et al., 2018). In 1064 

contrast to the frequentist approach based on ensembles, Bayesian neural networks 1065 

reformulate the training problem as inferring the posterior distribution of weights 1066 

(Heckerman, 2008; Ghahramani, 2015). However, exact Bayesian inference is 1067 

computationally prohibitive for deep networks. Therefore, the posteriors are usually 1068 

approximated using various methods such as Monte Carlo dropout at test time (Gal and 1069 

Ghahramani, 2016) and variational autoencoders (Section 2.3.4). Nevertheless, the above 1070 

methods only account for uncertainties in the network weights and cannot tackle data 1071 

uncertainties. 1072 

 1073 

Despite the reported successes, most of the studies reviewed in Section 3 are isolated 1074 

applications of machine learning towards a specific problem. Often, deep learning 1075 

architectures that have been tested and proven successful within the deep learning community 1076 

need some tailoring before they can be applied to hydrologic problems. This is because a 1077 

hydrologic application may not be directly mapped to a classical deep learning task for which 1078 

these architectures have been established. For example, LSTMs have achieved great success 1079 

for translating sentences from one language to another. A sentence differs from the time 1080 

series of a hydrologic variable, and this difference affects the design of the deep learning 1081 

architecture as well as data preparation practices. Often, identifying the appropriate 1082 

architecture for a specific application requires substantial efforts involving trial-and-error, 1083 

leading to a suboptimal choice. This difficulty partially counteracts the benefit deep learning 1084 

offers in terms of avoiding feature engineering required by conventional machine learning 1085 

methods. Bridging this disciplinary gap calls for formulation of hydrologic problems as 1086 

“standard” machine learning tasks furnished with catered benchmark datasets.    1087 

 1088 
5. CONCLUDING REMARKS 1089 

The recently revived interest within the hydrology community in machine learning in 1090 

general and deep learning in particular is likely to continue given the hydrologic data deluge. 1091 

The enormous amount of data poses challenges to traditional knowledge-driven reasoning 1092 

and provides exciting opportunities for machine learning-based data-driven reasoning. In this 1093 

overview, we attempted to provide a comprehensive, although far from complete, discussion 1094 

of recent success stories of applying machine learning as a stand-alone model or 1095 

complementary to process-based modeling efforts. Several primary challenges are identified 1096 

in using machine learning for prediction under nonstationary conditions, developing 1097 

interpretable machine learning models, ensuring physical consistency, training with limited 1098 

sample size, and characterizing and propagating uncertainty. Meanwhile, there is emerging 1099 

research that aims at integrating physical knowledge with machine learning to address some 1100 

of the above challenges.       1101 

 1102 

We argue that there is a need to develop formulations of representative hydrologic 1103 

problems with quality-controlled benchmark datasets. These formulations can be related to 1104 

one or more standard machine learning tasks that have been extensively studied, so that the 1105 

advances in the machine learning and other fields can be leveraged to identify the best 1106 

strategy to tackle the hydrologic problem. For example, forecasting of a hydrologic variable 1107 

may be formulated as the problem of estimating the expected value (deterministic) or 1108 

probability density function (probabilistic) of the variable of the next 𝑘 time steps 1109 
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conditioned on historical measurements of itself and explanatory variables. Depending on 1110 

how the variables are resolved spatially, each variable can be gridded or time series data. 1111 

Such formulations will facilitate development of general-purpose architectures suitable for 1112 

representative types of hydrologic applications as well as identifying similar problem 1113 

formulations from other fields of geosciences. Data from isolated applications that fall within 1114 

the same problem formulation can be compiled and quality controlled to create benchmark 1115 

datasets that are much larger than data used in a single application. The benchmark datasets 1116 

will serve as a venue for assessment and intercomparison of various machine learning models 1117 

in terms of prediction capability, physical feasibility, and interpretability. Achieving this 1118 

requires collective efforts within the hydrology community as well as interdisciplinary 1119 

collaboration with the machine learning and geosciences communities. 1120 
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